Designing hydrogels for controlled drug delivery

Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform on which various physiochemical interactions with the encapsulated drugs occur to control drug release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel–drug interactions across the network, mesh and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 digital issues and online access to articles

133,45 € per year

only 11,12 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Model-based modular hydrogel design

Article 26 March 2024

Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions

Article Open access 01 July 2024

Influence of drug and polymer molecular weight on release kinetics from HEMA and HPMA hydrogels

Article Open access 04 October 2023

References

  1. Langer, R. Drug delivery and targeting. Nature392, 5–10 (1998). CASGoogle Scholar
  2. Hoare, T. R. & Kohane, D. S. Hydrogels in drug delivery: progress and challenges. Polymer49, 1993–2007 (2008). CASGoogle Scholar
  3. Liechty, W. B., Kryscio, D. R., Slaughter, B. V. & Peppas, N. A. Polymers for drug delivery systems. Ann. Rev. Chem. Biomol. Eng.1, 149–173 (2010). CASGoogle Scholar
  4. Cohen, J. IL-12 deaths: explanation and a puzzle. Science270, 908 (1995). CASGoogle Scholar
  5. Florence, A. T. & Jani, P. U. Novel oral drug formulations. Drug Safety10, 233–266 (1994). CASGoogle Scholar
  6. Ashley, G. W., Henise, J., Reid, R. & Santi, D. V. Hydrogel drug delivery system with predictable and tunable drug release and degradation rates. Proc. Natl Acad. Sci. USA110, 2318–2323 (2013). This study features cleavable covalent linkages with tunable half-lives over a wide range and demonstrates different drug release kinetics by orchestrating the rates of bulk erosion and linkage cleavage independently.CASGoogle Scholar
  7. Tiwari, G. et al. Drug delivery systems: an updated review. Int. J. Pharm. Investig.2, 2–11 (2012). Google Scholar
  8. Tibbitt, M. W., Dahlman, J. E. & Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc.138, 704–717 (2016). CASGoogle Scholar
  9. Calvert, P. Hydrogels for soft machines. Adv. Mater.21, 743–756 (2009). CASGoogle Scholar
  10. Arakaki, K. et al. Artificial cartilage made from a novel double-network hydrogel: in vivo effects on the normal cartilage and ex vivo evaluation of the friction property. J. Biomed. Mater. Res. Part A93A, 1160–1168 (2010). CASGoogle Scholar
  11. Li, J., Illeperuma, W. R., Suo, Z. & Vlassak, J. J. Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro Lett.3, 520–523 (2014). CASGoogle Scholar
  12. Bodugoz-Senturk, H., Macias, C. E., Kung, J. H. & Muratoglu, O. K. Poly(vinyl alcohol)–acrylamide hydrogels as load-bearing cartilage substitute. Biomaterials30, 589–596 (2009). CASGoogle Scholar
  13. Su, J., Hu, B.-H., Lowe, W. L., Kaufman, D. B. & Messersmith, P. B. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials31, 308–314 (2010). This study demonstrates a synergy between adhesion ligands and cytokine-suppressive peptides, which improves viability of insulin-secreting cells in the presence of pro-inflammatory cytokines.CASGoogle Scholar
  14. Reichert, J. M. Trends in development and approval times for new therapeutics in the United States. Nat. Rev. Drug Discov.2, 695–702 (2003). CASGoogle Scholar
  15. Leader, B., Baca, Q. J. & Golan, D. E. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov.7, 21–39 (2008). CASGoogle Scholar
  16. Khan, T. A. & Peh, K. K. & Ch'ng, H. S. Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. J. Pharm. Pharm. Sci.3, 303–311 (2000). CASGoogle Scholar
  17. Mahdavi, A. et al. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc. Natl Acad. Sci. USA105, 2307–2312 (2008). CASGoogle Scholar
  18. Di, J. et al. Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano9, 9407–9415 (2015). CASGoogle Scholar
  19. Bessa, P. C., Casal, M. & Reis, R. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J. Tissue Eng. Regen. Med.2, 81–96 (2008). CASGoogle Scholar
  20. Thorn, R., Greeman, J. & Austin, A. An in vitro study of antimicrobial activity and efficacy of iodine-generating hydrogel dressings. J. Wound Care15, 305 (2006). CASGoogle Scholar
  21. Momoh, F. U., Boateng, J. S., Richardson, S. C., Chowdhry, B. Z. & Mitchell, J. C. Development and functional characterization of alginate dressing as potential protein delivery system for wound healing. Int. J. Biol. Macromol.81, 137–150 (2015). CASGoogle Scholar
  22. Pandit, A., Ashar, R. & Feldman, D. The effect of TGF-β delivered through a collagen scaffold on wound healing. J. Invest. Surg.12, 89–100 (1999). CASGoogle Scholar
  23. Jayakumar, R., Prabaharan, M., Kumar, P. S., Nair, S. & Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv.29, 322–337 (2011). CASGoogle Scholar
  24. Lee, K. Y. & Mooney, D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci.37, 106–126 (2012). CASGoogle Scholar
  25. Tellechea, A. et al. Alginate and DNA gels are suitable delivery systems for diabetic wound healing. Int. J. Low. Extrem. Wounds14, 146–153 (2015). CASGoogle Scholar
  26. Zhang, L., Chen, J. & Han, C. A multicenter clinical trial of recombinant human GM-CSF hydrogel for the treatment of deep second-degree burns. Wound Repair Regen.17, 685–689 (2009). Google Scholar
  27. Liu, W., Griffith, M. & Li, F. Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation. J. Mater. Sci. Mater. Med.19, 3365–3371 (2008). CASGoogle Scholar
  28. Dash, A. & Cudworth, G. Therapeutic applications of implantable drug delivery systems. J. Pharmacol. Toxicol. Methods40, 1–12 (1998). CASGoogle Scholar
  29. Yu, L. & Ding, J. Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev.37, 1473–1481 (2008). CASGoogle Scholar
  30. Silva, E. A. & Mooney, D. J. Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J. Thromb. Haemost.5, 590–598 (2007). This study demonstrates the ability of needle-injectable alginate hydrogels to regulate the temporal and spatial presentation of VEGF for the treatment of ischaemic diseases in a rodent model.CASGoogle Scholar
  31. Silva, E. A., Kim, E.-S., Kong, H. J. & Mooney, D. J. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl Acad. Sci. USA105, 14347–14352 (2008). CASGoogle Scholar
  32. Hiemstra, C. et al. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)–poly(lactide) hydrogels. J. Control. Release119, 320–327 (2007). CASGoogle Scholar
  33. Jin, R. et al. Synthesis and characterization of hyaluronic acid–poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater.6, 1968–1977 (2010). CASGoogle Scholar
  34. Lim, D. W., Nettles, D. L., Setton, L. A. & Chilkoti, A. Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl) phosphines in aqueous solution. Biomacromolecules8, 1463–1470 (2007). CASGoogle Scholar
  35. Wieduwild, R. et al. Minimal peptide motif for non-covalent peptide–heparin hydrogels. J. Am. Chem. Soc.135, 2919–2922 (2013). CASGoogle Scholar
  36. Kiick, K. L. Peptide-and protein-mediated assembly of heparinized hydrogels. Soft Matter4, 29–37 (2008). CASGoogle Scholar
  37. Ishii, S., Kaneko, J. & Nagasaki, Y. Development of a long-acting, protein-loaded, redox-active, injectable gel formed by a polyion complex for local protein therapeutics. Biomaterials84, 210–218 (2016). CASGoogle Scholar
  38. Desai, R. M., Koshy, S. T., Hilderbrand, S. A., Mooney, D. J. & Joshi, N. S. Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry. Biomaterials50, 30–37 (2015). CASGoogle Scholar
  39. Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev.39, 1272–1279 (2010). CASGoogle Scholar
  40. DeForest, C. A. & Anseth, K. S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem.3, 925–931 (2011). This study demonstrates the synthesis of light-responsive hydrogels, which enable photoconjugation of peptides and cell encapsulation, using a combination of bio-orthogonal click chemistries and photoreactions.CASGoogle Scholar
  41. Cao, Y. et al. Poly(N-isopropylacrylamide)–chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J. Control. Release120, 186–194 (2007). CASGoogle Scholar
  42. Mortensen, K. & Pedersen, J. S. Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution. Macromolecules26, 805–812 (1993). CASGoogle Scholar
  43. Kwon, D. Y. et al. Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot. Biomaterials85, 232–245 (2016). Google Scholar
  44. Davidorf, F. H. et al. Ocular toxicity of vitreal pluronic polyol F-127. Retina10, 297–300 (1990). CASGoogle Scholar
  45. Censi, R. et al. Photopolymerized thermosensitive hydrogels for tailorable diffusion-controlled protein delivery. J. Control. Release140, 230–236 (2009). CASGoogle Scholar
  46. van de Wetering, P., Metters, A. T., Schoenmakers, R. G. & Hubbell, J. A. Poly(ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins. J. Control. Release102, 619–627 (2005). CASGoogle Scholar
  47. Guvendiren, M., Lu, H. D. & Burdick, J. A. Shear-thinning hydrogels for biomedical applications. Soft Matter8, 260–272 (2012). CASGoogle Scholar
  48. Altunbas, A., Lee, S. J., Rajasekaran, S. A., Schneider, J. P. & Pochan, D. J. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials32, 5906–5914 (2011). CASGoogle Scholar
  49. Rajagopal, K. & Schneider, J. P. Self-assembling peptides and proteins for nanotechnological applications. Curr. Opin. Struct. Biol.14, 480–486 (2004). CASGoogle Scholar
  50. Haines-Butterick, L. et al. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl Acad. Sci. USA104, 7791–7796 (2007). CASGoogle Scholar
  51. Yan, C. et al. Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable β-hairpin peptide hydrogels. Soft Matter6, 5143–5156 (2010). CASGoogle Scholar
  52. Haines-Butterick, L. A., Salick, D. A., Pochan, D. J. & Schneider, J. P. In vitro assessment of the pro-inflammatory potential of β-hairpin peptide hydrogels. Biomaterials29, 4164–4169 (2008). CASGoogle Scholar
  53. Micklitsch, C. M. et al. Zinc-triggered hydrogelation of a self-assembling β-hairpin peptide. Angew. Chem. Int. Ed.123, 1615–1617 (2011). Google Scholar
  54. Rowan, S. J., Cantrill, S. J., Cousins, G. R., Sanders, J. K. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed.41, 898–952 (2002). Google Scholar
  55. McKinnon, D. D., Domaille, D. W., Cha, J. N. & Anseth, K. S. Bis-aliphatic hydrazone-linked hydrogels form most rapidly at physiological pH: identifying the origin of hydrogel properties with small molecule kinetic studies. Chem. Mater.26, 2382–2387 (2014). CASGoogle Scholar
  56. Jin, Y., Yu, C., Denman, R. J. & Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev.42, 6634–6654 (2013). CASGoogle Scholar
  57. Yesilyurt, V. et al. Injectable self-healing glucose-responsive hydrogels with pH-regulated mechanical properties. Adv. Mater.28, 86–91 (2016). CASGoogle Scholar
  58. Plieva, F. M., Galaev, I. Y., Noppe, W. & Mattiasson, B. Cryogel applications in microbiology. Trends Microbiol.16, 543–551 (2008). CASGoogle Scholar
  59. Sheridan, M., Shea, L., Peters, M. & Mooney, D. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J. Control. Release64, 91–102 (2000). CASGoogle Scholar
  60. Zhou, S., Bismarck, A. & Steinke, J. H. Ion-responsive alginate based macroporous injectable hydrogel scaffolds prepared by emulsion templating. J. Mater. Chem. B1, 4736–4745 (2013). CASGoogle Scholar
  61. Hassan, C. M. & Peppas, N. A. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules33, 2472–2479 (2000). CASGoogle Scholar
  62. Huebsch, N. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater.14, 1269–1277 (2015). CASGoogle Scholar
  63. Bencherif, S. A. et al. Injectable preformed scaffolds with shape-memory properties. Proc. Natl Acad. Sci. USA109, 19590–19595 (2012). CASGoogle Scholar
  64. Bencherif, S. A. et al. Injectable cryogel-based whole-cell cancer vaccines. Nat. Commun.6, 7556 (2015). CASGoogle Scholar
  65. Alexis, F., Pridgen, E., Molnar, L. K. & Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm.5, 505–515 (2008). CASGoogle Scholar
  66. Mitragotri, S. & Lahann, J. Physical approaches to biomaterial design. Nat. Mater.8, 15–23 (2009). CASGoogle Scholar
  67. Euliss, L. E., DuPont, J. A., Gratton, S. & DeSimone, J. Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev.35, 1095–1104 (2006). CASGoogle Scholar
  68. Gratton, S. E. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA105, 11613–11618 (2008). CASGoogle Scholar
  69. Merkel, T. J. et al. The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles. J. Control. Release162, 37–44 (2012). CASGoogle Scholar
  70. Ginn, S. L., Alexander, I. E., Edelstein, M. L., Abedi, M. R. & Wixon, J. Gene therapy clinical trials worldwide to 2012 – an update. J. Gene Med.15, 65–77 (2013). CASGoogle Scholar
  71. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2, 751–760 (2007). CASGoogle Scholar
  72. Vinogradov, S. V., Bronich, T. K. & Kabanov, A. V. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev.54, 135–147 (2002). CASGoogle Scholar
  73. Vicent, M. J. & Duncan, R. Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol.24, 39–47 (2006). CASGoogle Scholar
  74. Li, J. et al. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. J. Am. Chem. Soc.137, 1412–1415 (2015). A modular design of DNA nanogels for gene therapy was presented that can incorporate different functional elements to target specific cells and release therapeutic genes inside cells.CASGoogle Scholar
  75. Oh, J. K., Drumright, R., Siegwart, D. J. & Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci.33, 448–477 (2008). CASGoogle Scholar
  76. Rolland, J. P. et al. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc.127, 10096–10100 (2005). This study presents a versatile top-down technique for the fabrication of nanogels and microgels, which provides fine control over particle size and shape, and is compatible with various therapeutic agents.CASGoogle Scholar
  77. Perry, J. L. et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett.12, 5304–5310 (2012). CASGoogle Scholar
  78. Dunn, S. S. et al. Reductively responsive siRNA-conjugated hydrogel nanoparticles for gene silencing. J. Am. Chem. Soc.134, 7423–7430 (2012). CASGoogle Scholar
  79. Peppas, N. A. & Sahlin, J. J. Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials17, 1553–1561 (1996). CASGoogle Scholar
  80. Chaturvedi, M., Kumar, M. & Pathak, K. A review on mucoadhesive polymer used in nasal drug delivery system. J. Adv. Pharm. Technol. Res.2, 215 (2011). CASGoogle Scholar
  81. Reece, T. B., Maxey, T. S. & Kron, I. L. A prospectus on tissue adhesives. Am. J. Surg.182, S40–S44 (2001). Google Scholar
  82. Xu, J., Strandman, S., Zhu, J. X., Barralet, J. & Cerruti, M. Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials37, 395–404 (2015). CASGoogle Scholar
  83. Nho, Y.-C., Park, J.-S. & Lim, Y.-M. Preparation of poly(acrylic acid) hydrogel by radiation crosslinking and its application for mucoadhesives. Polymers6, 890–898 (2014). Google Scholar
  84. Bhattarai, N., Gunn, J. & Zhang, M. Chitosan-based hydrogels for controlled, localizeddrug delivery. Adv. Drug Deliv. Rev.62, 83–99 (2010). CASGoogle Scholar
  85. Ponchel, G. & Irache, J.-M. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv. Drug Deliv. Rev.34, 191–219 (1998). CASGoogle Scholar
  86. Shojaei, A. H., Paulson, J. & Honary, S. Evaluation of poly(acrylic acid-co-ethylhexyl acrylate) films for mucoadhesive transbuccal drug delivery: factors affecting the force of mucoadhesion. J. Control. Release67, 223–232 (2000). CASGoogle Scholar
  87. Das Neves, J. & Bahia, M. Gels as vaginal drug delivery systems. Int. J. Pharm.318, 1–14 (2006). CASGoogle Scholar
  88. Luppi, B. et al. Novel mucoadhesive nasal inserts based on chitosan/hyaluronate polyelectrolyte complexes for peptide and protein delivery. J. Pharm. Pharmacol.61, 151–157 (2009). CASGoogle Scholar
  89. Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science318, 426–430 (2007). CASGoogle Scholar
  90. Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. Mussel-inspired adhesives and coatings. Ann. Rev. Mater. Res.41, 99 (2011). CASGoogle Scholar
  91. Brubaker, C. E., Kissler, H., Wang, L.-J., Kaufman, D. B. & Messersmith, P. B. Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials31, 420–427 (2010). CASGoogle Scholar
  92. Nafea, E., Marson, A., Poole-Warren, L. & Martens, P. Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels. J. Control. Release154, 110–122 (2011). CASGoogle Scholar
  93. Lake, G. J. & Thomas, A. G. Strength of highly elastic materials. Proc. R. Soc. A300, 108–119 (1967). CASGoogle Scholar
  94. Kong, H. J., Wong, E. & Mooney, D. J. Independent control of rigidity and toughness of polymeric hydrogels. Macromolecules36, 4582–4588 (2003). CASGoogle Scholar
  95. Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater.15, 1155–1158 (2003). CASGoogle Scholar
  96. Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature489, 133–136 (2012). CASGoogle Scholar
  97. Lin, C.-C. & Metters, A. T. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev.58, 1379–1408 (2006). CASGoogle Scholar
  98. Burczak, K., Fujisato, T., Hatada, M. & Ikada, Y. Protein permeation through poly(vinyl alcohol) hydrogel membranes. Biomaterials15, 231–238 (1994). CASGoogle Scholar
  99. Dubrovskii, S. A. & Rakova, G. V. Elastic and osmotic behavior and network imperfections of nonionic and weakly ionized acrylamide-based hydrogels. Macromolecules30, 7478–7486 (1997). CASGoogle Scholar
  100. Sakai, T. et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules41, 5379–5384 (2008). CASGoogle Scholar
  101. Lee, K. Y. & Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev.101, 1869–1880 (2001). CASGoogle Scholar
  102. Vermonden, T., Censi, R. & Hennink, W. E. Hydrogels for protein delivery. Chem. Rev.112, 2853–2888 (2012). CASGoogle Scholar
  103. Young, M., Carroad, P. & Bell, R. Estimation of diffusion coefficients of proteins. Biotechnol. Bioeng.22, 947–955 (1980). CASGoogle Scholar
  104. Brazel, C. S. & Peppas, N. A. Modeling of drug release from swellable polymers. Eur. J. Pharm. Biopharm.49, 47–58 (2000). CASGoogle Scholar
  105. Lin, Y.-H., Liang, H.-F., Chung, C.-K., Chen, M.-C. & Sung, H.-W. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials26, 2105–2113 (2005). CASGoogle Scholar
  106. Amsden, B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules31, 8382–8395 (1998). CASGoogle Scholar
  107. MacArthur, J. W. Jr. et al. Sustained release of engineered stromal cell-derived factor 1-α from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction. Circulation128, S79–S86 (2013). CASGoogle Scholar
  108. Boontheekul, T., Kong, H. J. & Mooney, D. J. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials26, 2455–2465 (2005). CASGoogle Scholar
  109. O'shea, T. M., Aimetti, A. A., Kim, E., Yesilyurt, V. & Langer, R. Synthesis and characterization of a library of in-situ curing, nonswelling ethoxylated polyol thiol-ene hydrogels for tailorable macromolecule delivery. Adv. Mater.27, 65–72 (2015). CASGoogle Scholar
  110. Ishihara, M. et al. Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. J. Biomed. Mater. Res. A64, 551–559 (2003). Google Scholar
  111. Lutolf, M. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA100, 5413–5418 (2003). CASGoogle Scholar
  112. Um, S. H. et al. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater.5, 797–801 (2006). CASGoogle Scholar
  113. Purcell, B. P. et al. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat. Mater.13, 653–661 (2014). This study features a biomolecule-responsive hydrogel that can degrade in response to MMPs and release drugs for the treatment of myocardial infarction.CASGoogle Scholar
  114. Fischel-Ghodsian, F., Brown, L., Mathiowitz, E., Brandenburg, D. & Langer, R. Enzymatically controlled drug delivery. Proc. Natl Acad. Sci. USA85, 2403–2406 (1988). CASGoogle Scholar
  115. Podual, K., Doyle, F. J. & Peppas, N. A. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts. J. Control. Release67, 9–17 (2000). CASGoogle Scholar
  116. Maitz, M. F. et al. Bio-responsive polymer hydrogels homeostatically regulate blood coagulation. Nat. Commun.4, 2168 (2013). Google Scholar
  117. Lin, K. Y., Lo, J. H., Consul, N., Kwong, G. A. & Bhatia, S. N. Self-titrating anticoagulant nanocomplexes that restore homeostatic regulation of the coagulation cascade. ACS Nano8, 8776–8785 (2014). CASGoogle Scholar
  118. Zhang, Y., Wang, R., Hua, Y., Baumgartner, R. & Cheng, J. Trigger-responsive poly(β-amino ester) hydrogels. ACS Macro Lett.3, 693–697 (2014). CASGoogle Scholar
  119. Tibbitt, M. W., Han, B. W., Kloxin, A. M. & Anseth, K. S. Synthesis and application of photodegradable microspheres for spatiotemporal control of protein delivery. J. Biomed. Mater. Res. A100, 1647–1654 (2012). Google Scholar
  120. Yan, B., Boyer, J.-C., Habault, D., Branda, N. R. & Zhao, Y. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc.134, 16558–16561 (2012). CASGoogle Scholar
  121. Siepmann, J. & Göpferich, A. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Deliv. Rev.48, 229–247 (2001). CASGoogle Scholar
  122. Yu, H., Lu, J. & Xiao, C. Preparation and properties of novel hydrogels from oxidized konjac glucomannan cross-linked chitosan for in vitro drug delivery. Macromol. Biosci.7, 1100–1111 (2007). CASGoogle Scholar
  123. Sawhney, A. S., Pathak, C. P. & Hubbell, J. A. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules26, 581–587 (1993). CASGoogle Scholar
  124. Ma, G., Miao, B. & Song, C. Thermosensitive PCL-PEG-PCL hydrogels: synthesis, characterization, and delivery of proteins. J. Appl. Polym. Sci.116, 1985–1993 (2010). CASGoogle Scholar
  125. van de Manakker, F. et al. Protein-release behavior of self-assembled PEG–β-cyclodextrin/PEG–cholesterol hydrogels. Adv. Func. Mater.19, 2992–3001 (2009). CASGoogle Scholar
  126. Brannonpeppas, L. & Peppas, N. A. Equilibrium swelling behavior of pH-sensitive hydrogels. Chem. Eng. Sci.46, 715–722 (1991). CASGoogle Scholar
  127. Hong, W., Zhao, X., Zhou, J. & Suo, Z. A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids56, 1779–1793 (2008). CASGoogle Scholar
  128. Hirokawa, Y. & Tanaka, T. Volume phase-transition in a nonionic gel. J. Chem. Phys.81, 6379–6380 (1984). Google Scholar
  129. Obaidat, A. A. & Park, K. Characterization of protein release through glucose-sensitive hydrogel membranes. Biomaterials18, 801–806 (1997). CASGoogle Scholar
  130. Kokufata, E., Zhang, Y.-Q. & Tanaka, T. Saccharide-sensitive phase transition of a lectin-loaded gel. Nature351, 302–304 (1991). CASGoogle Scholar
  131. Zhang, S. et al. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat. Mater.14, 1065–1071 (2015). CASGoogle Scholar
  132. Ohmine, I. & Tanaka, T. Salt effects on the phase-transition of ionic gels. J. Chem. Phys.77, 5725–5729 (1982). CASGoogle Scholar
  133. Murdan, S. Electro-responsive drug delivery from hydrogels. J. Control. Release92, 1–17 (2003). CASGoogle Scholar
  134. Mumper, R. J., Huffman, A. S., Puolakkainen, P. A., Bouchard, L. S. & Gombotz, W. R. Calcium-alginate beads for the oral delivery of transforming growth factor-β1 (TGF-β1): stabilization of TGF-β1 by the addition of polyacrylic acid within acid-treated beads. J. Control. Release30, 241–251 (1994). CASGoogle Scholar
  135. Kanamala, M., Wilson, W. R., Yang, M., Palmer, B. D. & Wu, Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials85, 152–167 (2016). CASGoogle Scholar
  136. Shirakura, T., Kelson, T. J., Ray, A., Malyarenko, A. E. & Kopelman, R. Hydrogel nanoparticles with thermally controlled drug release. ACS Macro Lett.3, 602–606 (2014). CASGoogle Scholar
  137. Ankareddi, I. & Brazel, C. S. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release. Int. J. Pharm.336, 241–247 (2007). CASGoogle Scholar
  138. Huebsch, N. et al. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl Acad. Sci. USA111, 9762–9767 (2014). CASGoogle Scholar
  139. Brudno, Y. & Mooney, D. J. On-demand drug delivery from local depots. J. Control. Release219, 8–17 (2015). CASGoogle Scholar
  140. Lee, K. Y., Peters, M. C., Anderson, K. W. & Mooney, D. J. Controlled growth factor release from synthetic extracellular matrices. Nature408, 998–1000 (2000). CASGoogle Scholar
  141. Liu, T.-Y., Hu, S.-H., Liu, T.-Y., Liu, D.-M. & Chen, S.-Y. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir22, 5974–5978 (2006). CASGoogle Scholar
  142. Hu, S.-H., Liu, T.-Y., Liu, D.-M. & Chen, S.-Y. Nano-ferrosponges for controlled drug release. J. Control. Release121, 181–189 (2007). CASGoogle Scholar
  143. Zhao, X. et al. Active scaffolds for on-demand drug and cell delivery. Proc. Natl Acad. Sci. USA108, 67–72 (2011). CASGoogle Scholar
  144. Mitragotri, S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Dis.4, 255–260 (2005). CASGoogle Scholar
  145. Mitragotri, S., Blankschtein, D. & Langer, R. Ultrasound-mediated transdermal protein delivery. Science269, 850–853 (1995). CASGoogle Scholar
  146. Mann, B. K., Schmedlen, R. H. & West, J. L. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials22, 439–444 (2001). CASGoogle Scholar
  147. Kolate, A. et al. PEG — a versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release192, 67–81 (2014). CASGoogle Scholar
  148. Ehrbar, M. et al. Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ. Res.94, 1124–1132 (2004). CASGoogle Scholar
  149. Traub, S. et al. The promotion of endothelial cell attachment and spreading using FNIII10 fused to VEGF-A 165. Biomaterials34, 5958–5968 (2013). CASGoogle Scholar
  150. Van Hove, A. H., Beltejar, M.-J. G. & Benoit, D. S. Development and in vitro assessment of enzymatically-responsive poly(ethylene glycol) hydrogels for the delivery of therapeutic peptides. Biomaterials35, 9719–9730 (2014). CASGoogle Scholar
  151. Greenwald, R. B. et al. Controlled release of proteins from their poly(ethylene glycol) conjugates: drug delivery systems employing 1, 6-elimination. Bioconjugate Chem.14, 395–403 (2003). CASGoogle Scholar
  152. Schneider, E. L., Henise, J., Reid, R., Ashley, G. W. & Santi, D. V. Hydrogel drug delivery system using self-cleaving covalent linkers for once-a-week administration of exenatide. Bioconjugate Chem.27, 1210–1215 (2016). CASGoogle Scholar
  153. Shah, N. J. et al. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction. Proc. Natl Acad. Sci. USA111, 12847–12852 (2014). CASGoogle Scholar
  154. Macdonald, M. L. et al. Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials32, 1446–1453 (2011). CASGoogle Scholar
  155. Silva, E. A. & Mooney, D. J. Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials31, 1235–1241 (2010). CASGoogle Scholar
  156. Kolambkar, Y. M. et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials32, 65–74 (2011). CASGoogle Scholar
  157. Martino, M. M. et al. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science343, 885–888 (2014). Growth factors were engineered to bind strongly to the extracellular matrix, which led to superior tissue repair and decreased side effects in the treatment of diabetic wounds, compared with the wild-type proteins, which have low affinity to the extracellular matrix.CASGoogle Scholar
  158. Pike, D. B. et al. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials27, 5242–5251 (2006). CASGoogle Scholar
  159. Freeman, I., Kedem, A. & Cohen, S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials29, 3260–3268 (2008). CASGoogle Scholar
  160. Freudenberg, U. et al. Heparin desulfation modulates VEGF release and angiogenesis in diabetic wounds. J. Control. Release220, 79–88 (2015). CASGoogle Scholar
  161. Thatiparti, T. R., Shoffstall, A. J. & von Recum, H. A. Cyclodextrin-based device coatings for affinity-based release of antibiotics. Biomaterials31, 2335–2347 (2010). CASGoogle Scholar
  162. Zhang, P., Cheetham, A. G., Lin, Y.-a. & Cui, H. Self-assembled Tat nanofibers as effective drug carrier and transporter. ACS Nano7, 5965–5977 (2013). CASGoogle Scholar
  163. Soukasene, S. et al. Antitumor activity of peptide amphiphile nanofiber-encapsulated camptothecin. ACS Nano5, 9113–9121 (2011). CASGoogle Scholar
  164. Jensen, B. E., Dávila, I. & Zelikin, A. N. Poly(vinyl alcohol) physical hydrogels: matrix-mediated drug delivery using spontaneously eroding substrate. J. Phys. Chem. B120, 5916–5926 (2016). CASGoogle Scholar
  165. Mateen, R. & Hoare, T. Injectable, in situ gelling, cyclodextrin–dextran hydrogels for the partitioning-driven release of hydrophobic drugs. J. Mater. Chem. B2, 5157–5167 (2014). CASGoogle Scholar
  166. Kearney, C. J. & Mooney, D. J. Macroscale delivery systems for molecular and cellular payloads. Nat. Mater.12, 1004–1017 (2013). CASGoogle Scholar
  167. Alconcel, S. N., Baas, A. S. & Maynard, H. D. FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polym. Chem.2, 1442–1448 (2011). CASGoogle Scholar
  168. Fishburn, C. S. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J. Pharm. Sci.97, 4167–4183 (2008). CASGoogle Scholar
  169. Lee, S., Greenwald, R. B., McGuire, J., Yang, K. & Shi, C. Drug delivery systems employing 1, 6-elimination: releasable poly(ethylene glycol) conjugates of proteins. Bioconjugate Chem.12, 163–169 (2001). CASGoogle Scholar
  170. Cheetham, A. G., Ou, Y.-C., Zhang, P. & Cui, H. Linker-determined drug release mechanism of free camptothecin from self-assembling drug amphiphiles. Chem. Commun.50, 6039–6042 (2014). CASGoogle Scholar
  171. Jo, Y. S., Gantz, J., Hubbell, J. A. & Lutolf, M. P. Tailoring hydrogel degradation and drug release via neighboring amino acid controlled ester hydrolysis. Soft Matter5, 440–446 (2009). CASGoogle Scholar
  172. Geng, H., Song, H., Qi, J. & Cui, D. Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix. Nanoscale Res. Lett.6, 1–8 (2011). Google Scholar
  173. Lee, J. & Lee, K. Y. Injectable microsphere/hydrogel combination systems for localized protein delivery. Macromol. Biosci.9, 671–676 (2009). CASGoogle Scholar
  174. Johnston, C. T., Premachandra, G. S., Szabo, T., Lok, J. & Schoonheydt, R. A. Interaction of biological molecules with clay minerals: a combined spectroscopic and sorption study of lysozyme on saponite. Langmuir28, 611–619 (2011). Google Scholar
  175. Dawson, J. I. & Oreffo, R. O. Clay: new opportunities for tissue regeneration and biomaterial design. Adv. Mater.25, 4069–4086 (2013). CASGoogle Scholar
  176. Takahashi, T., Yamada, Y., Kataoka, K. & Nagasaki, Y. Preparation of a novel PEG–clay hybrid as a DDS material: dispersion stability and sustained release profiles. J. Control. Release107, 408–416 (2005). CASGoogle Scholar
  177. Abdurrahmanoglu, S. & Okay, O. Rheological behavior of polymer-clay nanocomposite hydrogels: effect of nanoscale interactions. J. Appl. Polym. Sci.116, 2328–2335 (2010). CASGoogle Scholar
  178. Appel, E. A. et al. Exploiting electrostatic interactions in polymer–nanoparticle hydrogels. ACS Macro Lett.4, 848–852 (2015). CASGoogle Scholar
  179. Khaled, S. Z. et al. One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA. Biomaterials87, 57–68 (2016). CASGoogle Scholar
  180. Wichterle, O. & Lim, D. Hydrophilic gels for biological use. Nature185, 117–118 (1960). Google Scholar
  181. Ritger, P. L. & Peppas, N. A. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release5, 23–36 (1987). CASGoogle Scholar
  182. Ritger, P. L. & Peppas, N. A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release5, 37–42 (1987). CASGoogle Scholar
  183. Schmidt, J. J., Rowley, J. & Kong, H. J. Hydrogels used for cell-based drug delivery. J. Biomed. Mater. Res. A87, 1113–1122 (2008). Google Scholar
  184. Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl. Med.5, 179ps177 (2013). Google Scholar
  185. Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol.25, 1015–1024 (2007). CASGoogle Scholar
  186. Ballios, B. G. et al. A hyaluronan-based injectable hydrogel improves the survival and integration of stem cell progeny following transplantation. Stem Cell Rep.4, 1031–1045 (2015). CASGoogle Scholar
  187. Robey, T. E., Saiget, M. K., Reinecke, H. & Murry, C. E. Systems approaches to preventing transplanted cell death in cardiac repair. J. Mol. Cell. Cardiol.45, 567–581 (2008). CASGoogle Scholar
  188. Rustad, K. C. et al. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials33, 80–90 (2012). CASGoogle Scholar
  189. Lim, F. & Sun, A. M. Microencapsulated islets as bioartificial endocrine pancreas. Science210, 908–910 (1980). CASGoogle Scholar
  190. Trivedi, N. et al. Islets in alginate macrobeads reverse diabetes despite minimal acute insulin secretory responses. Transplantation71, 203–211 (2001). CASGoogle Scholar
  191. Wang, N., Adams, G., Buttery, L., Falcone, F. H. & Stolnik, S. Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. J. Biotechnol.144, 304–312 (2009). CASGoogle Scholar
  192. Liras, A. Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. J. Transl. Med.8, 131 (2010). Google Scholar
  193. Ma, M. et al. Core–shell hydrogel microcapsules for improved islets encapsulation. Adv. Healthc. Mater.2, 667–672 (2013). CASGoogle Scholar
  194. Parisi-Amon, A., Mulyasasmita, W., Chung, C. & Heilshorn, S. C. Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells. Adv. Healthc. Mater.2, 428–432 (2013). CASGoogle Scholar
  195. Roche, E. T. et al. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials35, 6850–6858 (2014). CASGoogle Scholar
  196. Levit, R. D. et al. Cellular encapsulation enhances cardiac repair. J. Am. Heart Assoc.2, e000367 (2013). Google Scholar
  197. Newland, B. et al. Tackling cell transplantation anoikis: an injectable, shape memory cryogel microcarrier platform material for stem cell and neuronal cell growth. Small11, 5047–5053 (2015). CASGoogle Scholar
  198. Alsberg, E., Anderson, K., Albeiruti, A., Franceschi, R. & Mooney, D. Cell-interactive alginate hydrogels for bone tissue engineering. J. Dental Res.80, 2025–2029 (2001). CASGoogle Scholar
  199. Lin, C.-C., Raza, A. & Shih, H. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials32, 9685–9695 (2011). CASGoogle Scholar
  200. Rowley, J. A. & Mooney, D. J. Alginate type and RGD density control myoblast phenotype. J. Biomed. Mater. Res.60, 217–223 (2002). CASGoogle Scholar
  201. Bidarra, S. J. et al. Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials32, 7897–7904 (2011). CASGoogle Scholar
  202. Burdick, J. A. & Anseth, K. S. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials23, 4315–4323 (2002). CASGoogle Scholar
  203. Benoit, D. S., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat. Mater.7, 816–823 (2008). CASGoogle Scholar
  204. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell126, 677–689 (2006). CASGoogle Scholar
  205. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater.15, 326–334 (2015). Google Scholar
  206. Shin, J.-W. & Mooney, D. J. Improving stem cell therapeutics with mechanobiology. Cell Stem Cell18, 16–19 (2016). CASGoogle Scholar
  207. Alsberg, E. et al. Regulating bone formation via controlled scaffold degradation. J. Dental Res.82, 903–908 (2003). CASGoogle Scholar
  208. Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D. & Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater.14, 737–744 (2015). CASGoogle Scholar
  209. Stevens, K. R., Miller, J. S., Blakely, B. L., Chen, C. S. & Bhatia, S. N. Degradable hydrogels derived from PEG-diacrylamide for hepatic tissue engineering. J. Biomed. Mater. Res. A103, 3331–3338 (2015). CASGoogle Scholar
  210. Schlegel, P. N. & Group, H. S. Efficacy and safety of histrelin subdermal implant in patients with advanced prostate cancer. J. Urol.175, 1353–1358 (2006). CASGoogle Scholar
  211. Jaklenec, A., Stamp, A., Deweerd, E., Sherwin, A. & Langer, R. Progress in the tissue engineering and stem cell industry “are we there yet?”. Tissue Eng. Part B Rev.18, 155–166 (2012). Google Scholar
  212. Wurm, A., Nogler, M., Ammann, C. G. & Coraça-Huber, D. C. Effect of storage temperature and antibiotic impregnation on the quantity of bone morphogenetic protein seven in human bone grafts. Int. Orthop.38, 1513–1517 (2014). Google Scholar
  213. Spiller, K. L. & Vunjak-Novakovic, G. Clinical translation of controlled protein delivery systems for tissue engineering. Drug Deliv. Transl. Res.5, 101–115 (2015). CASGoogle Scholar
  214. Hunziker, E. et al. Translation from research to applications. Tissue Eng.12, 3341–3364 (2006). CASGoogle Scholar
  215. Chen, R. R., Silva, E. A., Yuen, W. W. & Mooney, D. J. Spatio–temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm. Res.24, 258–264 (2007). Google Scholar
  216. Kanczler, J. M. et al. The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation. Biomaterials31, 1242–1250 (2010). CASGoogle Scholar
  217. Basmanav, F. B., Kose, G. T. & Hasirci, V. Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials29, 4195–4204 (2008). Google Scholar
  218. Kearney, C. J. et al. Switchable release of entrapped nanoparticles from alginate hydrogels. Adv. Healthc. Mater.4, 1634–1639 (2015). CASGoogle Scholar
  219. Brudno, Y. et al. Refilling drug delivery depots through the blood. Proc. Natl Acad. Sci. USA111, 12722–12727 (2014). A new paradigm of refilling hydrogel drug depots that are already present in the body was presented, and the utility of highly specific drug–polymer interactions for this application was also demonstrated.CASGoogle Scholar
  220. Brudno, Y. et al. In vivo targeting through click chemistry. ChemMedChem.10, 617–620 (2015). CASGoogle Scholar
  221. Saltzman, W. M. & Radomsky, M. L. Drugs released from polymers: diffusion and elimination in brain tissue. Chem. Eng. Sci.46, 2429–2444 (1991). CASGoogle Scholar
  222. Weiser, J. R. & Saltzman, W. M. Controlled release for local delivery of drugs: barriers and models. J. Control. Release190, 664–673 (2014). This review provides a comprehensive overview of mathematical models for controlled drug release, highlighting the effect of tissue barriers on drug transport in the body.CASGoogle Scholar
  223. Santini, J. T., Cima, M. J. & Langer, R. A controlled-release microchip. Nature397, 335–338 (1999). CASGoogle Scholar
  224. Grayson, A. C. R. et al. Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat. Mater.2, 767–772 (2003). CASGoogle Scholar
  225. Santini, J. T. Jr, Richards, A. C., Scheidt, R., Cima, M. J. & Langer, R. Microchips as controlled drug-delivery devices. Angew. Chem. Int. Ed.39, 2396–2407 (2000). CASGoogle Scholar
  226. Lin, S. et al. Stretchable hydrogel electronics and devices. Adv. Mater.28, 4497–4505 (2016). CASGoogle Scholar
  227. Flory, P. J. & Rehner, J. Statistical mechanics of cross-linked polymer networks II Swelling. J. Chem. Phys.11, 521–526 (1943). CASGoogle Scholar
  228. Kuijpers, A. et al. Characterization of the network structure of carbodiimide cross-linked gelatin gels. Macromolecules32, 3325–3333 (1999). CASGoogle Scholar
  229. Anseth, K. S., Bowman, C. N. & Brannon-Peppas, L. Mechanical properties of hydrogels and their experimental determination. Biomaterials17, 1647–1657 (1996). CASGoogle Scholar
  230. Koshy, S. T. et al. Click-crosslinked injectable gelatin hydrogels. Adv. Healthc. Mater.5, 541–547 (2016). CASGoogle Scholar
  231. Li, J. Y., Hu, Y. H., Vlassak, J. J. & Suo, Z. G. Experimental determination of equations of state for ideal elastomeric gels. Soft Matter8, 8121–8128 (2012). CASGoogle Scholar
  232. Hu, Y. H., Zhao, X. H., Vlassak, J. J. & Suo, Z. G. Using indentation to characterize the poroelasticity of gels. Appl. Phys. Lett.96, 121904 (2010). Google Scholar
  233. Drury, J. L., Dennis, R. G. & Mooney, D. J. The tensile properties of alginate hydrogels. Biomaterials25, 3187–3199 (2004). CASGoogle Scholar
  234. Adhikari, B. & Banerjee, A. Short peptide based hydrogels: incorporation of graphene into the hydrogel. Soft Matter7, 9259–9266 (2011). CASGoogle Scholar
  235. Waters, D. J. et al. Morphology of photopolymerized end-linked poly(ethylene glycol) hydrogels by small-angle X-ray scattering. Macromolecules43, 6861–6870 (2010). CASGoogle Scholar
  236. Krogstad, D. V. et al. Small angle neutron scattering study of complex coacervate micelles and hydrogels formed from ionic diblock and triblock copolymers. J. Phys. Chem. B118, 13011–13018 (2014). CASGoogle Scholar
  237. Zhang, X., Hansing, J., Netz, R. R. & DeRouchey, J. E. Particle transport through hydrogels is charge asymmetric. Biophys. J.108, 530–539 (2015). CASGoogle Scholar
  238. Fatin-Rouge, N., Starchev, K. & Buffle, J. Size effects on diffusion processes within agarose gels. Biophys. J.86, 2710–2719 (2004). CASGoogle Scholar

Acknowledgements

This work was supported by the government under R01DE0130333 awarded by the US National Institute of Dental & Craniofacial Research of the National Institutes of Health, and award A21448 from Novartis Pharmaceuticals Corporation. The authors thank L. Gu and A. Göpferich for discussions.